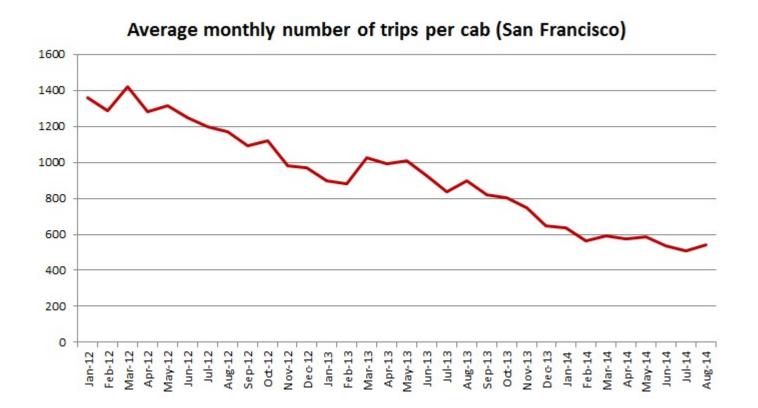
11th Workshop on Discrete Choice Models

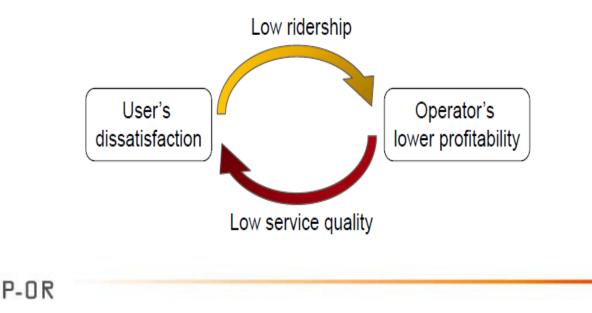
Choice-based routing problem in the context of flexible mobility on demand

Shadi Sharif Bilge Atasoy Michel Bierlaire Moshe Ben-Akiva


Silverstein, 2014, calculates the fares for a sample trip of 5 miles in 10 minutes under car speed of 30MPH with no waiting time.

	Uber	Taxi +20% Tip	Taxi / Uber
New York	17.75	18.60	1.0
Philadelphia	15.25	17.04	1.1
Portland	15.05	18.00	1.2
Cleveland	13.00	16.74	1.3
Dallas	10.30	13.50	1.3
Miami	13.25	17.40	1.3
Indianapolis	11.65	15.60	1.3
Phoenix	11.00	15.00	1.4
Minneapolis	12.15	17.10	1.4
Baltimore	10.75	15.66	1.5
Columbus	10.20	15.42	1.5
Denver	10.35	16.50	1.6
Detroit	12.30	19.80	1.6
Seattle	11.70	19.20	1.6
San Francisco	12.30	20.70	1.7
Chicago	9.50	16.80	1.8
Boston	11.10	19.92	1.8
Atlanta	10.00	18.00	1.8
Houston	9.00	16.50	1.8
San Diego	11.35	21.36	1.9
Los Angeles	9.40	19.62	2.1

NSP-OR


Source: http://bruegel.org/2014/09/the-economics-of-uber/

Conventional public transportation services are not personalized. Fixed route, Fixed schedule, Low frequency etc.

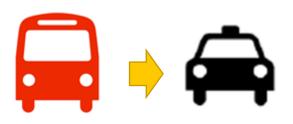
Most people cannot afford using taxi service on a daily basis.

Personalized transportation services using mobile apps are emerging Uber, Lyft, GrabTaxi.

Problem definition

How to increase operator profit and user satisfaction?

Flexibility to demand fluctuations is necessary. Currently, due to lack of the flexibility:


Off-peak:

=> Drivers cannot find passengers On-peak:

=> Passengers cannot find drivers.

Some passengers may give up taking public transportation.

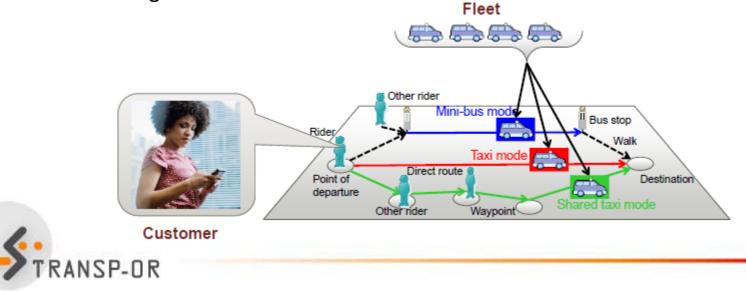
=> Operator lose revenue opportunity.

What is FMOD?

Flexible Mobility on Demand

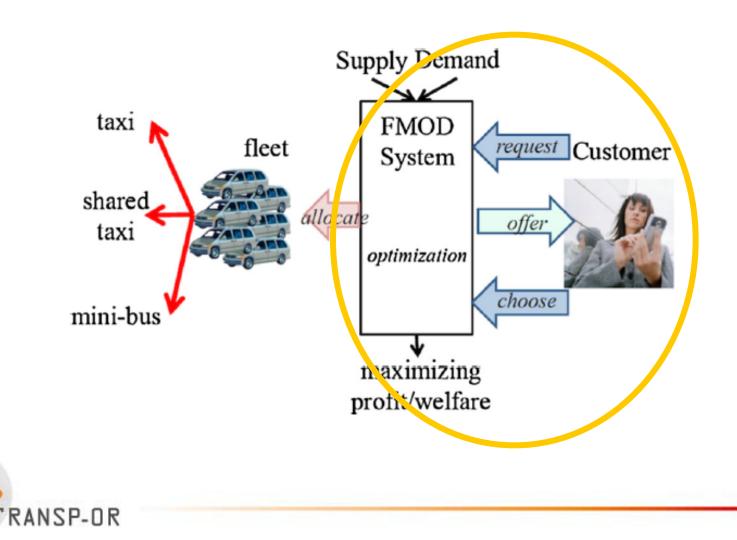
Real-time system

Flexibility to demand fluctuations

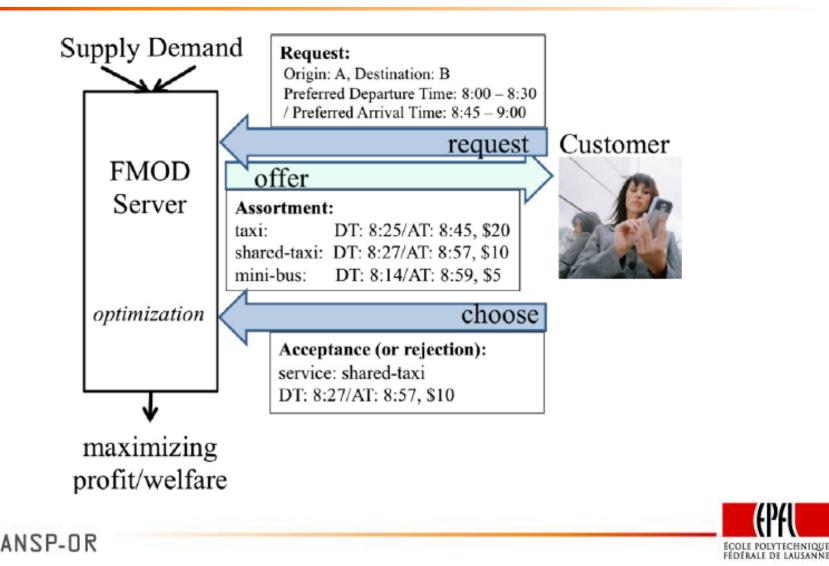

Concepts

Dynamic allocation of vehicle to service modes

Optimized travel menus are offered to the customer


Dynamic allocation of vehicle to service modes

Same vehicle is dynamically reassigned to different service modes according to the evolving demand.



FMOD

FMOD

Modes of transport

- Serves a single passenger at a time
- Provides door-to-door service
- No fix location for pickup and delivery
- Fastest alternative
- Highest fare.

Taxi

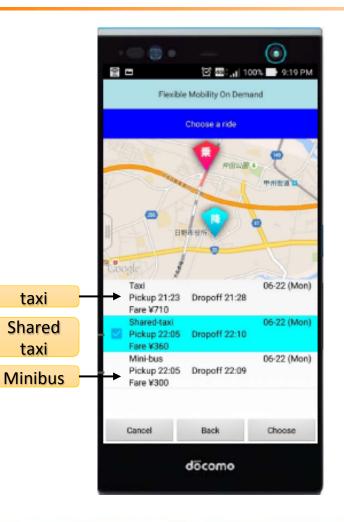
Modes of transport

- Multiple passengers in the same vehicle
- Provides door-to-door service
- Arbitrary locations for pickup and delivery
- Travel time may increase due to the pick-up and drop-off of other passengers.

Shared Taxi

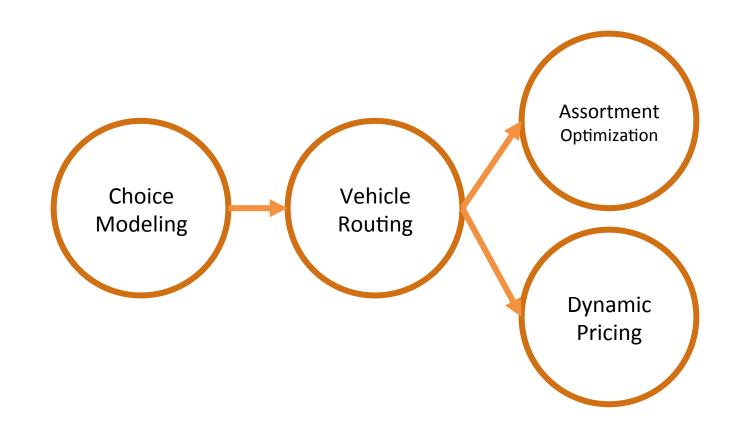
Modes of transport

Mini bus


• Fixed routes

ANSP-OR

- Pick-up / drop-off locations are predetermined
- Adapted schedule for passengers similar to the shared-taxi


FMOD app

Integrated choice-based optimization framework

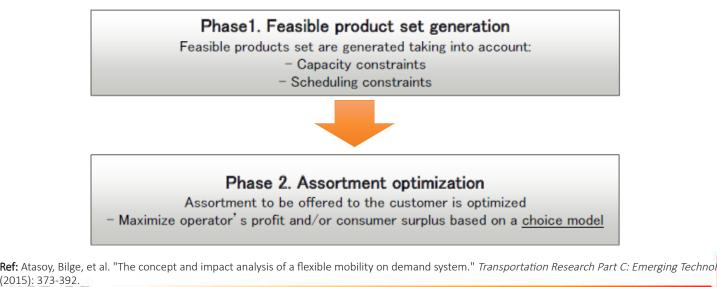
Simulation (Sequential framework)

Product *Pn*,*m*,*l*

A service on a vehicle departing at a certain time period

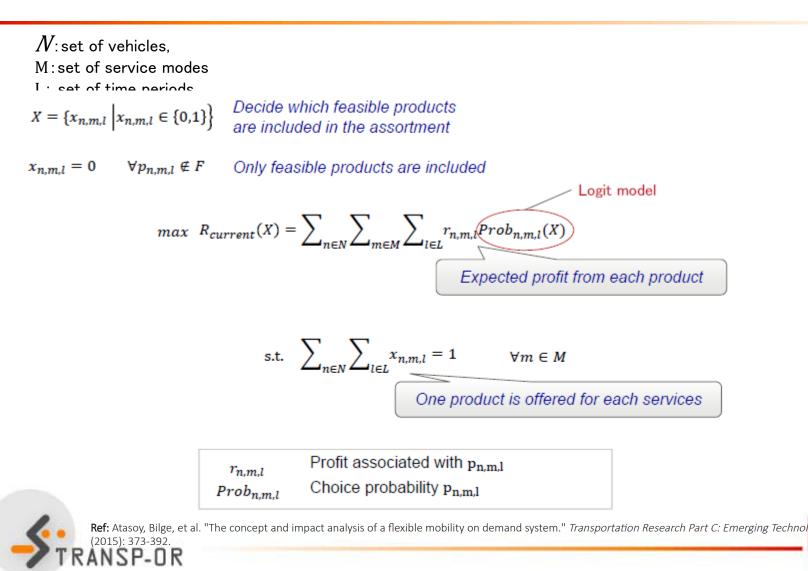
Feasible product $p_{n,m,l} \in F$

A product that satisfies the capacity and scheduling constraints

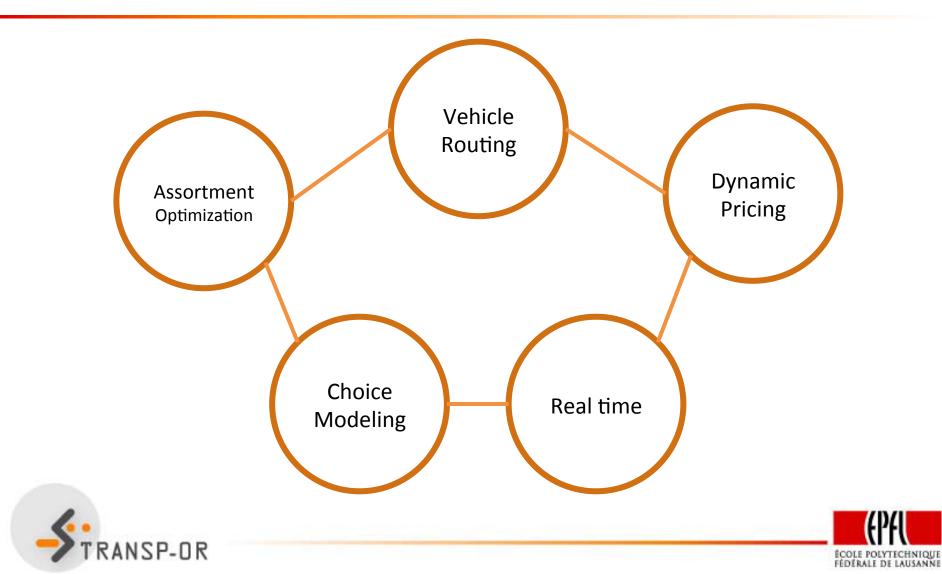

Vehicle capacity

No conflict with existing schedules

Deviation from preferred time window


Assortment

A list of feasible products on the travel menu



Simulation (model)

Integrated choice-based optimization framework

Assumptions

- Integrating vehicle routing, assortment optimization and dynamic pricing.
- Flexible service providing
- Homogeneous fleet with the same capacity of 8 persons.
- Dynamic change of role among taxi and shared-taxi
- Information of the ride request: Origin and destination of the requested trip Preferred departure time interval or preferred arrival time Number of passengers

The passenger could accept or reject the proposed option. The the server may reject the request:

- (1) there is no vehicle available to serve the customer
- (2) the associated profit to the offered choices is negative

Assumptions

Arrival / departure time

A time window (in minutes) is received $\delta^P(+/-)15$

Fare

Base fare charged once

Price per kilometer (shortest path between O-D)

Three levels of price

Utility of taxi and shared taxis

 $u_{taxi} = \beta_0 P_{Base} + \beta_1 P_{Km} D + \beta_2 (TTime) + \beta_3 (SD) + \epsilon$

 $u_{sharedtaxi} = \beta_0 P_{Base} + \beta_1 P_{Km} D + \beta_2 (MaxRideTime) + \beta_3 (SD) + \epsilon$

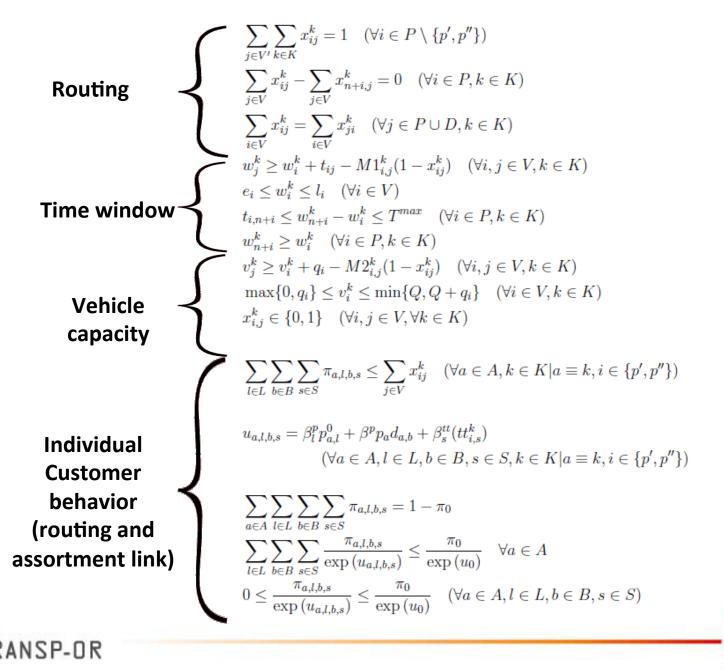
Sets

- $a \in A$ Set of nodes generated for a new request (Each node represents a product)
- $s \in S$ Set of services {Taxi, Shared Taxi}
 - P^S Set existing pickup nodes for service S
 - D^S Set of existing delivery nodes for service S
- $k \in K$ set of vehicles which can be used either as a taxi or as a shared-taxi
 - V Set of nodes in the graph $P^S \cup D^S \cup A \cup Depot$
 - V_i^+ Set of exiting arcs from the node *i*
 - V_i^- Set of entering arc to the node i

Notations

Parameters

- C_n Total routing cost (excluding cost associated with products) for request n
- c_{ij} Cost of traveling from node *i* to node *j*
- t_{ij} Travel time between node *i* and *j*
- $[e_i, l_i]$ service time window at node i
 - Q vehicle capacity
 - q_i load at node *i*, positive value for pickup and negative value for delivery it is of quantity 1 for shared-taxi, and *Q* for taxi
- T^{max} maximum ride time for shared taxi
 - M Large constants
 - u_0 Utility of no-purchase (reject) option
 - f_a Charging fare associated with alternative a
 - v_a Utility weight of alternative a


Variables

- p_a The probability of selecting alternative a by customer
- x_{ij}^k Binary variable, 1 if vehicle k travels from node i to node j
- w_i Arrival time of vehicle at node i
- l_i^k Load of vehicle k at node i

$$\operatorname{Max}\sum_{a\in A} f_a p_a - \left(\sum_{i\in V} \sum_{j\in V} \sum_{k\in K} c_{ij} x_{ij}^k\right)$$

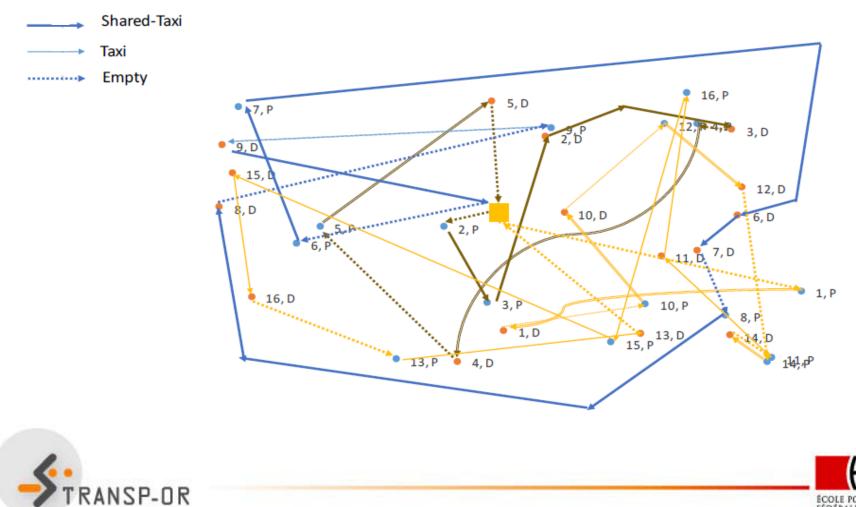
Computational results

Alternatives:

- Two type of scheduled delay
- Two price levels
- Two types of vehicles

Individual based opt out included

Initial cost and per kilometer cost is different from taxi to shared taxi.


Profit is defined for the assortment.

Customer	Offer	Profit	Time	Selection
1	2,3,6	5.3	0.75	2
2	3,6	10.068	1.55	6
3	2,7	16.36	0.91	7
4	2	19.2203	0.92	2
5	3,4	8.8821	1.42	4
6	1,8	12.54	1.81	8
7	6,3	12.084	1.39	6
8	6,4	13.42	1.25	6
9	4	20.16	1.28	4
10	2,3	8.04	0.91	2
11	7	4.01	2.06	7
12	3,4	4.96	1.24	4
13	8	16.18	1.5	8
14	6,2	11.66	9.42	2
15	5,6	15.02	4.05	5

Computational results

Conclusion

- Integrated framework for FMOD
- Adding minibus in the system
- More sophisticated pricing planning
- Intelligent heuristic for large size network

Thank You

Conclusion

$$\operatorname{Max} \sum_{a \in A} \sum_{l \in L} \sum_{b \in B} \sum_{s \in S} \pi_{a,l,b,s} (p_{a,l}^0 + p_a d_{a,b}) - \sum_{i \in V} \sum_{j \in V} \sum_{k \in K} c_{ij}^k x_{ij}^k$$

